a2 United States Patent

US009158551B2

(10) Patent No.: US 9,158,551 B2

Im et al. 45) Date of Patent: Oct. 13,2015
(54) ACTIVATING AND DEACTIVATING USPC ottt 713/100
OPERATING SYSTEM (OS) FUNCTION See application file for complete search history.
BASED ON APPLICATION TYPE IN
MANYCORE SYSTEM (56) References Cited
(71) Applicant: SAMSUNG ELECTRONICS CO., U.S. PATENT DOCUMENTS
LTD., Suwon-si, Gyeonggi-do (KR)
5,303,369 A * 4/1994 Borcherding et al. 718/104
(72) Inventors: Chae Seok Im, Suwon-si (KR); Seung 6,195,676 B1* 2/2001 Spixetal. 718/107
Won Lee, Hwaseong_si (KR), Shi Hwa 6,438,698 B1* 82002 Hellum 713/322
Lee, Seoul (KR); Jae Don Lee, Paju-si 6,742,100 B1* 52004 Schneeetal. 7LU173
s ’ s 6,839,787 B2* 1/2005 Lehwalderetal. . .. 710/301
(KR); Min Kyu Jeong, Yongin-si (KR) 6910213 B1* 62005 Hironoetal. 718/108
. 7,139,855 B2* 11/2006 Armstrong et al. . .. 710/200
(73) Assignee: SAMSUNG ELECTRONICS CO., 7398380 B1* 7/2008 Lovettetal.oovc... 713/1
LTD., Suwon-Si (KR) 7,627,770 B2* 12/2009 Jones 713/300
7,856,562 B2* 12/2010 Branoveretal. 713/300
(*) Notice: Subject to any disclaimer, the term of this 7,996,847 B2* 82011 Wongetal. 718/104
patent is extended or adjusted under 35 g’gzg’(ﬁg g%: léggg 5““ ot atl o - ;}é;}ég
,250, erma etal.
US.C. 154(b) by 246 days. 8,381,223 B2* 22013 VanDykeetal. 718/104
(21) Appl. No.: 13/734,045 (Continued)
(22) Filed: Jan. 4, 2013 FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data TP 2008-33877 2/2008
KR 10-2009-0055459 6/2009
US 2013/0179674 Al Jul. 11, 2013 .
(Continued)
(30) Foreign Application Priority Data Primary Examiner — Thomas Lee
Jan. 5,2012 (KR) coovvveeeeoreeenrrecee, 10-2012-0001461 Assistant Examiner — Santosh R Poudel
(74) Attorney, Agent, or Firm — Staas & Halsey LLP
(51) Imt.ClL
GOG6F 9/144 (2006.01) (57) ABSTRACT
GO6F 9/445 (2006.01)
GOG6F 9/50 (2006.01) An apparatus and method for dynamically reconfiguring an
(52) US.CL Operating System (OS) for a manycore system are provided.
CPC ... GO6F 9/4411 (2013.01); GO6F 9/44505 The apparatus may include an application type determining
(2013.01); GO6F 9/50 (2013.01) unit to determine a type of an executed application, and an OS
(58) Field of Classification Search reconfiguring unit to activate only at least one function in an
CPC ... GO6F 9/50: GO6F 9/5061: GO6F 9/5016: OS, based on the determined type of the application, and to
GOG6F 9/505; GOG6F 9/5027; GOG6F 9/5077, reconfigure the OS.
GOG6F 9/52; GO6F 1/00; GO6F 9/44; GO6F
9/4411 13 Claims, 10 Drawing Sheets
faati Stream Data-parallel . .
tion - : Multithreadin
410~ Application type processing processing cading
420~ OS configuration Pipelining Scatter-gather SMP
Features
Tick handling X X 0
Multitasking X X @)
430 :
Load balancing X 0 O
Define & synch. 0O 0 0
A\ v I\ v AN ~ J
440 450 460

US 9,158,551 B2

Page 2
(56) References Cited 2007/0294689 Al™* 12/2007 Garmney ... 718/1
2008/0086617 Al* 4/2008 Kasahara et al. 711/167
U.S. PATENT DOCUMENTS 2008/0115150 Al* 5/2008 Jaganaetal. 719/319
2008/0155553 Al* 6/2008 Astigarragaetal. 718/108
8,386,672 B2* 2/2013 Tsueietal. ..o, 710/62 2008/0163210 Al 7/2008 Bowman et al.
8,443,178 B2* 5/2013 Kohiga ... 7131 2008/0163239 Al* 7/2008 Sugumaretal. 718/105
8,458,402 B1* 6/2013 Karnik .. 711122 2008/0184247 Al* 7/2008 Hughesetal. 718/104
8,656,408 B2* 2/2014 Elshishiny et .. 718/108 2008/0201393 Al* 82008 Krauss ... - 707/206
8,732,439 B2* 5/2014 Lippett 712/214 2008/0235700 Al* 9/2008 Iguchi 718/104
2002/0046332 Al* 4/2002 Ueno 711/168 2008/0294866 Al* 11/2008 Kurichiyath et al. ... 711/201
2002/0103847 Al* 82002 Potash 709/107 2009/0049451 Al* 2/2009 Batesccccccocrviernenns 718/108
2002/0112102 Al* 82002 Taruietal. 710/60 2009/0198883 Al* 8/2009 Fortinetal.covevvenne T11/112
2003/0236814 Al* 12/2003 Miyasaka et al. 709/102 2009/0222835 Al* 9/2009 Effing et al. . 718/104
2004/0153733 Al* 82004 Lin ... o 71476 2010/0058351 Al* 3/2010 Yahagi 718/104
2004/0177243 AL* 9/2004 Worley, Jr. .. o 71372 2010/0169673 Al* 7/2010 Saripalli 713/300
2005/0044228 Al 2/2005 Birkestrand et al. ... 709/226 2011/0035612 Al* 2/2011 Chall et al. 713/323
2005/0125702 Al* 6/2005 Huangetal. 713/320 2011/0113406 Al 52011 Flemming et al
2005/0132121 Al* 6/2005 Robinson 711/100 « ming ’
5005/0141554 Al* 6/2005 Hammarlund ot al. ... 370/468 2011/0161592 Al 6/2011 Na(.:hlmuthu etal. ... 711/125
2005/0289213 Al* 12/2005 Newport etal. 709/200 2011/0284625 Al* 112011 Smithetal. 235/375
2006/0136605 Al* 6/2006 Olukotun 7101 2011/0296420 Al* 12/2011 Pegushln etal. ... 718/102
2006/0174246 Al* 8/2006 Tamuraetal. .. 718/100 2012/0324464 Al* 12/2012 Slateretal.cccceonn. 718/104
2006/0206891 Al* 9/2006 Armstrong et al ... 718/1
2006/0221961 Al* 10/2006 Basso etal. 370/390 FOREIGN PATENT DOCUMENTS
2006/0277551 Al* 12/2006 Accapadi et al. ... 718/107
2007/0005757 Al* 1/2007 Fingeretal. 709/224 KR 10-2009-0115115 11/2009
2007/0113231 Al* 5/2007 Honmura 718/100 KR 10-2010-0039674 4/2010
2007/0156940 Al* 7/2007 Zmudzinskietal. 710/240 KR 10-2010-0069572 6/2010
2007/0157211 Al* 7/2007 Wangetal. ..o 719/313 KR 10-0962531 6/2010
2007/0204268 Al* 8/2007 Drepper 718/102

2007/0266391 Al* 11/2007 Hoffman etal. 718/106 * cited by examiner

U.S. Patent Oct. 13, 2015 Sheet 1 of 10 US 9,158,551 B2

FIG. 1A (CONVENTIONAL ART)

App 130 App
0S120 || 0S

| |

Manycore hardware

Hypervisor 110

U.S. Patent

Oct. 13, 2015 Sheet 2 of 10

FIG. 1B (Conventional art)

US 9,158,551 B2

i OS
App || APP | services 150
I ' T

Microkernel 140

Manycore hardware

U.S. Patent Oct. 13, 2015 Sheet 3 of 10 US 9,158,551 B2

FIG. 2
Stream General
210~ app. app.
Minimal Full
220~ features features
230~ Dyn. Reconf. OS
Manycore hardware

US 9,158,551 B2

Sheet 4 of 10

Oct. 13, 2015

U.S. Patent

FIG. 3

US 9,158,551 B2

Sheet 5 of 10

Oct. 13, 2015

U.S. Patent

09y oSt (1147
0 0 0 youks 29 sugeq | |
O 0] X 3uroue[eq peo]
- 0ty
O X X Sunysen N
O X X durppuey orL | |
saImed
dINS 19yje3-1013180Q Sururpadig uonems3yuod SO h_—~ 07
durssaosoid duissaooid
SurpearpnnN E:ﬁm d-ere(y Wesng ad£y uoneonddy 01V
v "OIA

U.S. Patent Oct. 13, 2015 Sheet 6 of 10 US 9,158,551 B2

FIG. 5

510 520 530

US 9,158,551 B2

Sheet 7 of 10

Oct. 13, 2015

U.S. Patent

FIG. 6

U.S. Patent Oct. 13, 2015 Sheet 8 of 10 US 9,158,551 B2

FIG. 7
(START)
i
RETURN RESOURCES i~ 701
i
SELECT NEW APPLICATION —~_ 702
i
START SELECTED APPLICATION —~— 703
i
ALLOCATE RESOURCES I~ 704

705
TYPE OF APPLICATION NO

IS CHANGED ?

DETERMINE TYPE OF APPLICATION -~ 706

J

RECONFIGURE OS —~~ 707

U.S. Patent Oct. 13, 2015 Sheet 9 of 10 US 9,158,551 B2

FIG. 8A

Tick Load
handling monitoring

7

7% -
\ Time
820

Remove
overhead

P

Time

U.S. Patent Oct. 13, 2015 Sheet 10 of 10 US 9,158,551 B2

FIG. 8B

Ta}sk
Block switch Resume

Y

Idle task % App. task
> Time
0 @ 830

Block Resume

Y Remove
overhead

—
-t

App. task

N

LI~

8

ey
-

App. task App. task

Time

US 9,158,551 B2

1
ACTIVATING AND DEACTIVATING
OPERATING SYSTEM (OS) FUNCTION
BASED ON APPLICATION TYPE IN
MANYCORE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the priority benefit of Korean
Patent Application No. 10-2012-0001461, filed on Jan. 5,
2012, in the Korean Intellectual Property Office, the disclo-
sure of which is incorporated herein by reference.

BACKGROUND

1. Field

One or more example embodiments of the following
description relate to an apparatus and method for dynamically
reconfiguring an Operating System (OS) for a manycore sys-
tem that may provide a scheme of dynamically and efficiently
managing reconfigurable resources.

2. Description of the Related Art

Due to an increase in demand for low power and high
performance of applications, a manycore system employing a
plurality of processing cores is on the rise. To efficiently
manage resources of a manycore system, a method of parti-
tioning the manycore system into relatively smaller partitions
and assigning the partitions to an individual application is
frequently used.

FIGS. 1A and 1B illustrate diagrams of a conventional
hypervisor-based manycore OS, and a conventional micro-
kernel-based manycore OS, respectively.

Referring to FIG. 1A, resources may be partitioned using a
hypervisor 110, and an OS 120 and an application 130 may be
executed for each of the partitioned resources. However, there
is a disadvantage in that the partitioned resources remain
unchanged during initialization of a system and the OS 120.

Referring to FIG. 1B, only a minimum function of an OS
150, for example a resource management or acommunication
between cores, may be provided, and the other functions may
be provided as services in a separate partition. Additionally,
partitions may be dynamically assigned based on demands of
an application.

However, since a partition for an OS needs to be fixed and
assigned, usability of the cores may be reduced. In other
words, conventional designs may have a problem of a low
usability of cores due to a fixed function of a part of or all of
cores. Additionally, there is a disadvantage in that a response
time of an OS system call is extended by adding a layer, for
example a microkernel, a hypervisor, and the like.

SUMMARY

The foregoing and/or other aspects are achieved by provid-
ing an apparatus for dynamically reconfiguring an Operating
System (OS) for a manycore system, the apparatus including
an application type determining unit to determine a type of an
executed application, and an OS reconfiguring unit to deac-
tivate at least one function in an OS, based on the determined
type of the application, and to reconfigure the OS.

The foregoing and/or other aspects are achieved by provid-
ing a method of dynamically reconfiguring an OS for a many-
core system, the method including determining a type of an
executed application, and deactivating at least one function in
an OS, based on the determined type of the application, and
reconfiguring the OS.

15

30

40

45

2

The foregoing and/or other aspects are achieved by provid-
ing a method of dynamically reconfiguring an OS for a many-
core system. The method includes determining a type of
application to be executed in the manycore system, determin-
ing whether a function associated with the type of application
to be executed is necessary or unnecessary, and deactivating
the function associated with the type of application deter-
mined to be executed when the function is determined to be
unnecessary.

Additional aspects, features, and/or advantages of example
embodiments will be set forth in part in the description which
follows and, in part, will be apparent from the description, or
may be learned by practice of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages will become
apparent and more readily appreciated from the following
description of the example embodiments, taken in conjunc-
tion with the accompanying drawings of which:

FIGS. 1A and 1B illustrate diagrams of a conventional
hypervisor-based manycore Operating System (OS), and a
conventional microkernel-based manycore OS, respectively;

FIG. 2 illustrates a diagram of an apparatus for dynami-
cally reconfiguring an OS for a manycore system according to
example embodiments;

FIG. 3 illustrates a diagram of a 16-core system applied to
anapparatus for dynamically reconfiguring an OS for a many-
core system according to example embodiments;

FIG. 4 illustrates a diagram of an example of setting an OS
partition based on a type of an application using an apparatus
for dynamically reconfiguring an OS for a manycore system
according to example embodiments;

FIG. 5 illustrates a diagram of a type of an application
using an apparatus for dynamically reconfiguring an OS for a
manycore system according to example embodiments;

FIG. 6 illustrates a diagram of an example in which an
existing application is terminated and a new application is
started, using an apparatus for dynamically reconfiguring an
OS for a manycore system according to example embodi-
ments;

FIG. 7 illustrates a flowchart of a method of dynamically
reconfiguring an OS for a manycore system according to
example embodiments; and

FIGS. 8A and 8B illustrate diagrams to explain effects
obtained by using an apparatus and method for dynamically
reconfiguring an OS for a manycore system according to
example embodiments.

DETAILED DESCRIPTION

Reference will now be made in detail to example embodi-
ments, examples of which are illustrated in the accompanying
drawings, wherein like reference numerals refer to the like
elements throughout. Example embodiments are described
below to explain the present disclosure by referring to the
figures.

An apparatus for dynamically reconfiguring an Operating
System (OS) for a manycore system according to example
embodiments may include an application type determining
unit to determine a type of an executed application, and an OS
reconfiguring unit to activate only at least one function in an
OS, based on the determined type of the application, and to
reconfigure the OS. Hereinafter, the apparatus for dynami-
cally reconfiguring an OS for a manycore system may be
referred to as an “OS reconfiguration apparatus.”

US 9,158,551 B2

3

The OS reconfiguration apparatus may deactivate a func-
tion of an OS that is not used in applications, and may remove
system overhead, based on types of applications to improve
overall system performance.

Hereinafter, an apparatus and method for dynamically
reconfiguring an OS for a manycore system according to
example embodiments will be further described.

FIG. 2 illustrates a diagram to explain an effect obtained by
using an OS reconfiguration apparatus according to example
embodiments.

When the OS reconfiguration apparatus is used, all cores
may be assigned to execute an application, and accordingly
the cores may have high usability. Additionally, since the OS
reconfiguration apparatus does not require a separate layer, a
long response time to an OS system call may not be required.

Furthermore, when the OS reconfiguration apparatus is
used, a function of an OS 230 may be dynamically reset for
each partition, based on features of an application to be
executed.

For example, referring to FIG. 2, in a partition used to
execute a stream application 210, only a single task 220 may
be assigned per core, and an OS execution overhead may be
reduced by excluding a multitasking function, and the like.

FIG. 3 illustrates a diagram of a 16-core system applied to
an OS reconfiguration apparatus according to example
embodiments.

Although system 310 of FIG. 3 is assumed to include 16
cores and four Dynamic Random Access Memories
(DRAMs), the example embodiments should not be limited to
a particular quantity of resources.

The 16-core system of FIG. 3 may be operated based on the
scenario described below.

A user may start application 0 320. A type of the applica-
tion 0 320 may be determined by an application type deter-
mining unit included in the OS reconfiguration apparatus.
The application 0 320, as an example, may be determined as
a stream processing type.

For example, the application type determining unit may
verify an executed application, and may determine a type of
the verified application to be at least one of a stream process-
ing type, a data-parallel processing type, and a multithreading
type.

An OS reconfiguring unit included in the OS reconfigura-
tion apparatus may assign an OS partition assignable in a
system based on the determined type of the application, and
may reconfigure the assigned OS partition.

For example, the OS reconfiguring unit may assign a
resource partition to the application 0 320. An amount of
resources to be demanded, for example a number of cores, a
memory size, and the like, may be determined and requested
by a user or a loader, and the OS reconfiguring unit may
analyze available resources of a system, and may appropri-
ately allocate the available resources. In this example, four
cores, namely core 0, core 1, core 4, and core 5, and DRAM
0 neighboring the four cores may be allocated. The four cores
and the DRAM 0 may be used as resources of OS partition O
330.

The OS reconfiguring unit may set a corresponding OS
partition to be used for pipelining, based on a type of an
application, for example a stream processing type. In the
same manner, when a user starts application 1 340 with a
multithreading type, resources, for example, core 2, core 3,
core 6, core 7, and DRAM 1, may be allocated, and OS
partition 1 350 corresponding to the application 1 340 may be
set to be used for Symmetric Multi-Processing (SMP).

10

20

40

45

55

4

For example, the OS reconfiguring unit may set the
assigned OS partition to be used for at least one of pipelining,
scatter-gather, and SMP, and may reconfigure the OS.

FIG. 4 illustrates a diagram of an example of setting an OS
partition based on a type of an application using an OS recon-
figuration apparatus according to example embodiments.

Additionally, FIG. 5 illustrates a diagram to explain a type
of an application using an OS reconfiguration apparatus
according to example embodiments.

An application type determining unit included in the OS
reconfiguration apparatus may verify an executed applica-
tion, and may determine a type of the verified application to
be at least one of a stream processing type, a data-parallel
processing type, and a multithreading type, as described
above, as illustrated in row 410 of FIG. 4.

Subsequently, an OS reconfiguring unit included in the OS
reconfiguration apparatus may verify the determined type of
the application, may set an assigned OS partition to be used
for at least one of pipelining, scatter-gather, and SMP, and
may reconfigure an OS,; as illustrated in row 420 of FIG. 4.

Referring again to FIG. 4, a variety of functions may be
activated or deactivated according to the OS partition
assigned by the OS reconfiguration apparatus. The variety of
functions, as illustrated in rows 430 of FIG. 4, include tick
handling, multitasking, load balancing, and IPC and synchro-
nization although other functions that are not listed may
equally be activated or deactivated. In FIG. 4, an “X” denotes
a deactivated function while an “O” denotes an activated
function.

In an example, when the assigned OS partition is set to be
used for pipelining, the OS reconfiguring unit may activate
only a data distribution function between tasks and a load
balancing function between tasks in the OS, and may recon-
figure the OS.

In another example, when the assigned OS partition is set
to be used for scatter-gather, the OS reconfiguring unit may
activate only a communication function between tasks and a
synchronization function between tasks in the OS, and may
reconfigure the OS.

In still another example, when the assigned OS partition is
set to be used for SMP, the OS reconfiguring unit may activate
all functions of the OS, and may reconfigure the OS.

Specifically, when an application has a stream processing
type 510 of FIG. 5, the OS reconfiguring unit may set the
assigned OS partition to be used for pipelining, as illustrated
at column 440 of FIG. 4.

In this instance, referring to FIG. 4, the OS reconfiguring
unit may execute a single task per core, and may deactivate
functions other than a communication function between tasks
and a synchronization function between tasks, as illustrated at
column 440 of FIG. 4, where a tick handling function, a
multitasking function, and a load balancing function are each
indicated as deactivated and an IPC and synchronization
function is indicated as activated.

When a predetermined function is deactivated, a run-time
overhead of the predetermined function may be reduced, and
accordingly a performance of an application may be
improved.

For example, when an application has a data-parallel pro-
cessing type 520 of FI1G. 5, the OS reconfiguring unit may set
the assigned OS partition to be used for scatter-gather.

When the assigned OS partition is set to be used for scatter-
gather, the OS reconfiguring unit may activate a communica-
tion function between tasks and a synchronization function
between tasks in the OS, and may reconfigure the OS. Further,
when the assigned OS partition is set to be used for scatter-
gather, a single worker task may be executed per core, and

US 9,158,551 B2

5

data may be dynamically distributed between tasks, and
accordingly a load balancing function may be additionally
required.

The other functions may be deactivated. This is illustrated
at column 450 of FIG. 4, where a tick handling function and
a multitasking function are each indicated as deactivated and
a load balancing function and an IPC and synchronization
function are each indicated as activated.

Additionally, when an application has a multithreading
type 530 of FIG. 5, the OS reconfiguring unit may set the
assigned OS partition to be used for SMP. When the assigned
OS partition is set to be used for SMP, the OS reconfiguring
unit may activate all functions of the OS, as illustrated at
column 460 of FIG. 4, where a tick handling function, a
multitasking function, a load balancing function, and an IPC
and synchronization function are each indicated as activated.

Accordingly, when functions of an OS are determined as
unnecessary or not required based on a type of an application,
a performance of a system may be improved by removing
corresponding overheads. Such functions may include over-
head functions. More specifically, such functions may
include one or more of a tick handling function, a multitask-
ing function, a load balancing function, and an IPC and syn-
chronization function. In an embodiment, a function is deter-
mined as unnecessary or not required when the function is not
needed for proper execution of a particular application or
when the function is not used in the particular application.

FIG. 6 illustrates a diagram of an example in which an
existing application is terminated and a new application is
started, using an OS reconfiguration apparatus according to
example embodiments.

Referring to FIG. 6, when application 0 is terminated and
when application 2 620 is started in system 610, resources of
OS partition 0, for example core 0, core 1, core 4, core 5, and
DRAM 0, may be returned, and resources of OS partition 2
630 may be allocated. The resources of the OS partition 2 630
may include, for example, core 0, core 1, core 4, core 5, core
8, core 9, core 12, core 13, DRAM 0, and DRAM 2.

As described above, resources may be efficiently used as
occasion demands, rather than being fixed to a predetermined
application and an OS.

A corresponding OS partition may be set to be used for
scatter-gather, based on a type of an application, for example
a data-parallel processing type.

FIG. 7 illustrates a flowchart of a method of dynamically
reconfiguring an OS for a manycore system according to
example embodiments.

Referring to FIG. 7, when a previous application is termi-
nated, resources may be returned to an OS in operation 701.

In operation 702, a new application may be selected. In
operation 703, the selected application may be started.

In operation 704, resources may be allocated to the started
application, namely a currently executed application, through
the OS. The resources may include, for example cores,
DRAMSs, and the like.

In operation 705, whether a type of the currently executed
application is changed may be determined based on a type of
the previous application.

When the type of the currently executed application is
determined to be changed in operation 705, the type of the
currently executed application may be determined in opera-
tion 706, and the OS may be reconfigured based on the deter-
mined type in operation 707.

Conversely, when the type of the currently executed appli-
cation is determined to remain unchanged in operation 705,
the currently executed application may be processed, instead
of the OS being reconfigured.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 8A and 8B illustrate diagrams to explain effects
obtained by using an apparatus and method for dynamically
reconfiguring an OS for a manycore system according to
example embodiments.

Effects expected when the apparatus and method for
dynamically reconfiguring an OS for a manycore system are
used will be described with reference to FIGS. 8A and 8B.

To provide various system services, an OS may cause a
periodic overhead, for example tick handling 810, load moni-
toring 820, and the like, as shown in FIG. 8A.

For example, when the above-described functions of the
OS are not required based on a type of an application, a
performance of a system may be improved by removing cor-
responding overheads.

Additionally, when a currently executed task of an appli-
cation is blocked due to a problem, such as a wait for data or
synchronization, and the like, task switch 830 may occur, as
shown in FIG. 8B. Subsequently, when the blocked task is
resumed, the task switch 830 may also occur. When a number
of tasks executable based on a type of the application is
limited to one, a corresponding overhead may be removed
and a faster response time of the task may be achieved by
preventing the task switch 830.

The method for dynamically reconfiguring an OS for a
manycore system according to the above-described example
embodiments may be recorded in non-transitory computer-
readable media including program instructions to implement
various operations embodied by a computer. The media may
also include, alone or in combination with the program
instructions, data files, data structures, and the like. The pro-
gram instructions recorded on the media may be those spe-
cially designed and constructed for the purposes of the
example embodiments, or they may be of the kind well-
known and available to those having skill in the computer
software arts.

Examples of non-transitory computer-readable media
include magnetic media such as hard disks, floppy disks, and
magnetic tape; optical media such as CD ROM disks and
DVDs; magneto-optical media such as optical discs; and
hardware devices that are specially configured to store and
perform program instructions, such as read-only memory
(ROM), random access memory (RAM), flash memory, and
the like. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher level code that may be executed by the
computer using an interpreter. The described hardware
devices may be configured to act as one or more software
modules in order to perform the operations of the above-
described example embodiments, or vice versa. Any one or
more of the software modules described herein may be
executed by a dedicated processor unique to that unit or by a
processor common to one or more of the modules. The
described methods may be executed on a general purpose
computer or processor or may be executed on a particular
machine such as the apparatus for dynamically reconfiguring
an OS for a manycore system described herein.

Although example embodiments have been shown and
described, it would be appreciated by those skilled in the art
that changes may be made in these example embodiments
without departing from the principles and spirit of the disclo-
sure, the scope of which is defined in the claims and their
equivalents.

What is claimed is:

1. An apparatus for dynamically reconfiguring an Operat-
ing System (OS) for a manycore system, the apparatus com-
prising:

US 9,158,551 B2

7

an application type determining unit to determine a type of

an executed application; and

an OS reconfiguring unit to deactivate at least one function

performed by an OS partition based on the determined
type of the application,

wherein at least one core of a plurality of processing cores

is dynamically assigned to the OS partition,

wherein the OS reconfiguring unit assigns an OS partition

assignable in the manycore system, based on the deter-
mined type of the application,

wherein, when an assigned OS partition is set to be used for

pipelining, the OS reconfiguring unit activates a data
distribution function between tasks and a load balancing
function between tasks in the OS while deactivating the
at least one function in the OS.

2. The apparatus of claim 1, wherein the application type
determining unit verifies the executed application, and deter-
mines the type of the verified application to be at least one of
a stream processing type, a data-parallel processing type, and
a multithreading type.

3. The apparatus of claim 1, wherein the OS reconfiguring
unit sets the assigned OS partition to be used for at least one
of pipelining, scatter-gather, and Symmetric Multi-Process-
ing (SMP).

4. The apparatus of claim 3, wherein the at least one func-
tion is deactivated when the at least one function is deter-
mined to be unnecessary for proper execution of the type of
the executed application.

5. An apparatus for dynamically reconfiguring an Operat-
ing System (OS) for a manycore system, the apparatus com-
prising:

an application type determining unit to determine a type of

an executed application; and

an OS reconfiguring unit to deactivate at least one function

performed by an OS partition based on the determined
type of the application,

wherein at least one core of a plurality of processing cores

is dynamically assigned to the OS partition,

wherein the OS reconfiguring unit assigns an OS partition

assignable in the manycore system, based on the deter-
mined type of the application,

wherein the OS reconfiguring unit sets the assigned OS

partition to be used for at least one of pipelining, scatter-
gather, and Symmetric Multi-Processing (SMP), and
reconfigures the OS,

wherein, when the assigned OS partition is set to be used

for scatter-gather, the OS reconfiguring unit activates a
communication function between tasks and a synchro-
nization function between tasks in the OS while deacti-
vating the at least one function in the OS.

6. A method of dynamically reconfiguring an Operating
System (OS) for a manycore system, the method comprising:

determining a type of an executed application; and

deactivating at least one function in an OS partition based
on the determined type of the application,

wherein at least one core of a plurality of processing cores

is dynamically assigned to the OS partition,

wherein the deactivating comprises:

15

20

25

30

35

40

45

50

55

8

assigning an OS partition assignable in the manycore sys-
tem, based on the determined type of the application;
and

reconfiguring the assigned OS partition,

wherein, when an assigned OS partition is set to be used for

pipelining,

the method further comprises:

activating a data distribution function between tasks and a

load balancing function between tasks in the OS while
deactivating the at least one function in the OS.

7. The method of claim 6, wherein the determining com-
prises verifying the executed application, and determining the
type of the verified application to be at least one of a stream
processing type, a data-parallel processing type, and a multi-
threading type.

8. A non-transitory computer readable recording medium
storing a program to cause a computer to implement the
method of claim 6.

9. A method for dynamically reconfiguring an Operating
System (OS) for a manycore system, the method comprising:

determining a type of application to be executed in the

manycore system;

determining whether a function associated with the type of

application to be executed is necessary or unnecessary;
and

deactivating the function associated with the type of appli-

cation determined to be executed when the function is
determined to be unnecessary
wherein the function is performed by an OS partition of the
(OR

wherein the deactivating comprises:

assigning an OS partition assignable in the manycore sys-
tem, based on the determined type of the application;
and

reconfiguring the assigned OS partition,

wherein, when an assigned OS partition is set to be used for

pipelining,

the method further comprises:

activating a data distribution function between tasks and a

load balancing function between tasks in the OS while
deactivating the at least one function in the OS.

10. The method of claim 9, wherein the function comprises
an overhead function.

11. The method of claim 9, wherein the function comprises
one or more of a tick handling function, a multitasking func-
tion, a load balancing function, and an IPC and synchroniza-
tion function.

12. The method of claim 9, wherein the function is deter-
mined as unnecessary when the function is not required for
proper execution of the type of application that is to be
executed.

13. A non-transitory computer readable recording medium
storing a program to cause a computer to implement the
method of claim 9.

